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Theory of Optically Controlled
Millimeter-Wave Phase Shifters
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Abstract —In this paper we analyze the millimeter-wave propagation
characteristics of a dielectric waveguide containing a plasma-dominated
region. Such a device presents a new method for controlling millimeter-wave
propagation in semiconductor waveguides via either optical or electronic
means resulting in ultrafast switching and gating. We have calculated the
phase shift and attenuation resulting from the presence of the plasma.
Higher order modes, both TE and TM, as well as millimeter-wave frequency
variation, are studied in both Si and GaAs dielectric waveguides. We have
also formulated a surface plasma model that is a good approximation to the
more elaborate volume plasma model. Phase shifts are predicted to be as
high as 1400° /cm for modes operating near cutoff. These modes suffer
very little attenuation when the plasma region contains a sufficiently high
carrier density.

I. INTRODUCTION

E ARE CURRENTLY witnessing a resurgence of

interest in millimeter-wave technology. The
frequency band extending from 30 to 1000 GHz is attrac-
tive in several respects. Devices operating above K-band
frequencies offer greater carrier bandwidth, better spatial
resolution, and a more compact technology than presently
used X- and K-band systems. Millimeter- and submillime-
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ter-wave systems also have some advantages over optical
systems, such as better atmospheric propagation in selected
bands and a technology more amenable to frequency mul-
tiplexing [1]-[3], while retaining good angular resolution of
the latter. A basic problem is how to effectively preserve
these benefits. Our approach to the solution of this prob-
lem promises to yield much larger modulation bandwidths
than are realizable with optical systems, while preserving
the economy of the millimeter-wave system over a given
carrier frequency band.

One of the important parts of the microwave and/or
millimeter-wave system is the wavegnide. At microwave
frequencies, metal waveguides are commonly used. At
higher frequencies, either microstrip or dielectric wave-
guide structures become more attractive. Microstrip trans-
mission lines are used up to 30 GHz. For frequencies
greater than 30 GHz, the losses in microstrip structures are
high, and fabrication techniques become more difficult due
to the small strip width and the substrate thickness. Diclec-
tric rectangular waveguides become an alternative to the
expensive metal waveguides. The use of high-purity semi-
conductor materials as dielectric waveguides is particularly
important since active devices such as oscillators, Gunn or
IMPATT diodes, mixers /detectors, and modulators can be
fabricated monolithically with the sermconductmg wave-
guides.
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One important aspect of millimeter-wave devices is the
control of the phase and amplitude of a wave propagating
through the waveguide. The use of semiconductor bulk
phenomena in implementing microwave control compo-
nents has been discussed [4]. The principal phenomena
explored have been the dielectric and conductive properties
of the plasma state. A frequency-scanning millimeter-wave
antenna utilizing periodic metallic-stripe perturbations on
a silicon waveguide has been demonstrated [5]. Millimeter-
wave dielectric image-guide integrated devices have been
developed [6]. In the optical region, there are a variety of
controllable waveguide devices which have not found their
counterparts in the millimeter-wave region. High-speed
light modulators that make use of the electrooptic,
acoustooptic, and magnetooptic effects in bulk material
have been described [7].

Phase shifting is a fundamental control operation. A
general approach to this operation, used extensively at
both optical [8] and microwave [9] frequencies, is to alter
the phase velocity along a fixed interval of a guiding
medium. In this case, the phase shift per unit length is
equal to the change in the propagation constant of the
guided wave. One well-known method of altering the dis-
persion of millimeter waves is to introduce a plasma into
the guiding medium. In their work, Jacobs et al. [10] have
demonstrated that the phase shift can be accomplished by
injecting plasma with p-i-n diodes [11]. Similar work at low
frequency has been demonstrated recently by Glance [12].
There are several shortcomings of p-i-n-diode-controlied
millimeter-wave devices: a) large phase shifts have not
been achieved due to excess heating of the waveguide; b)
there are large losses ( > 6dB) due to excess metallization
for contact to the junction region; and c) the p-i-n diode
becomes an integral part of the waveguide. This leads to
complex boundary conditions and poor electrical isolation
between the p-i-n diode and the waveguide structure.

Recently, we have demonstrated a way of circumventing
the above difficulties. By illuminating the guide with
above-bandgap radiation, we have created the basic ele-
ment of a new class of device, an optically controlled
millimeter-wave phase shifter and modulator. Optical con-
trol offers the following advantages: a) near perfect isola-
tion; b) low static and dynamic insertion losses in some
regimes; c) fast response; d) high power handling capabil-
ity; e) when picosecond pulses are used, it is possibie for
extremely high density plasmas to be injected without
damaging the material; f) by proper choice of semiconduct-
ing material and laser wavelength, one can generate plasma
with any desirable density distributions and at any desir-
able time; g) ultrafast switching and gating of millimeter-
wave signals is possible; and h) using picosecond exciting-
probing techniques, the dynamic evolution of the injected
plasma can be studied in detail. Parameters related to
transport properties of the carriers can be accurately de-
termined.

This paper analyzes in detail the changes that occur in
the propagation characteristics of millimeter waves in a
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dielectric waveguide when a plasma-dominated region is
present. The model and method analysis are presented in
[13]. In that paper, both the experimental and theoretical
studies concentrated primarily on the propagation of the
dominant lowest order model (TM) denoted by Ef, for
94-GHz waves in a silicon waveguide. In practice, it has
been found that for waves propagating in an over-sized
waveguide with a plasma covered region, the waves will not
remain in the fundamental mode. In this paper, we extend
the analysis to include higher order TM modes E; , and
TE modes £ . Calculations have also been carried out at
frequencies other than 94 GHz. To understand the multi-
mode propagation characteristics more fully, a model based
on a surface plasma is devised, and the results compared
with those obtained by a more elaborate calculation involv-
ing a finite thickness plasma layer. It is found that the
surface plasma model gives a good approximation for
plasma layers less than 10 pm in thickness. This is signifi-
cant since we now have a simple theoretical model to
predict the phase shift and to understand the mode-cou-
pling mechanism in a general situation for plasma-
controlled phase-shifting devices of arbitrary dimensions.

Recently, we have demonstrated the operation of a
wide-bandwidth, high-repetition rate opto-electronic modu-
lator for 94-GHz signals based on a plasma-controlled
Cr-doped GaAs waveguide [14]. The rapid phase and am-
plitude modulation are achieved by using picosecond opti-
cal pulses to inject a plasma into the waveguide. In Cr-
doped GaAs, in contrast to silicon, the electron-hole plasma
recombines rapidly, i.e., in less than 100 ps, thus resulting
in a high-speed, wide-bandwidth, and high-repetition rate
operation of a millimeter-wave modulator. Therefore, in
this paper, we extend our theoretical investigation of di-
electric materials to include GaAs.

In Section II, the concept of a plasma-controlled dielec-
tric waveguide is reviewed and earlier experimental results
are summarized. The complete analysis, including the pre-
sentation of the surface plasma model, is then treated in
Section III. It should be pointed out that the analysis
presented here is quite general; it can be applied to the
plasma-controlled dielectric waveguide devices no matter
whether the plasma injection is by optical means, as in this
work, or by electronic means, as in the work reported by
Jacobs et al. [10].

II. CoONCEPT OF PLASMA-CONTROLLED DIELECTRIC
WAVEGUIDE WITH PRELIMINARY EXPERIMENTAL
RESULTS

Shown in Fig. 1 is a schematic of the optically controlla-
ble phase shifter. It consists of a rectangular semiconductor
waveguide with tapered ends to allow efficient transition of
millimeter waves both to and from a conventional metal
waveguide. Optical control is realized when the broadwall
of the semiconductor guide is illuminated by light gener-
ated by either a proximal source or one removed by a
suitable optical guiding medium. The width ¢ and height b
of the guide are selected so that it supports an E{; mode.
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Fig. 1. Schematic diagram of the optically controlled phase shifter. The
propagation vector in the guide is k,, d is the depth of the injected
plasma layer, o is the width of the guide, and b is the height of the
guide.

The initial depth of plasma injection is controlled by
selecting an appropriate combination of optical radiation
wavelength and semiconductor absorption properties.

At sufficiently small injection depths, the final thickness
of the plasma is determined primarily by processes of
carrier diffusion and recombination. The effect of the
plasma-occupied volume is to introduce a layer whose
index of refraction at the millimeter-wave frequency is
larger than that of the remaining volume of the waveguide.
As the optical-illumination intensity increases from a low
value, a significant phase shift will not appear until the
plasma frequency exceeds the frequency of the guided
millimeter wave, after which it will rapidly rise and eventu-
ally saturate. The form and magnitude of the phase shift
versus the intensity of illumination, and hence the plasma
density, depends in detail on the material and geometrical
factors that characterize the optically perturbed guiding
structure, and the determination of these quantities re-
quires a detailed solution of the corresponding boundary
value problems. The optically induced phase shift A¢ for a
given section of waveguide of length / is determined by
computing the propagation constant in the z direction;
first, in the absence of the injected plasma k,, and then
with the plasma k7; thus, A¢ = (k] — k,)I.

Comparison between the experimental and the theoret-
ical results presented in [13] and in Section III are shown
in Fig, 2. The correspondence between the data and the
theoretically predicted curve is excellent. As shown in Fig.
2, we observed a maximum phase shift of 59° at 94 GHz
for a plasma column 1.6 mm in length with dynamic
insertion loss of less than one decibel.

By slightly variations of the phase-shifting technique, we
have also demonstrated opto-electronic switching and gat-
ing of millimeter-wave signals at 94 GHz by an optically
induced plasma in a silicon waveguide [15]. A millimeter-
wave pulse width as short as one nanosecond and variable
to tens of nanoseconds can readily be obtained by this
technique. We conclude from these studies that optical
injection of plasma is superior to electrical injection be-
cause of its near-perfect isolation. The geometry and na-
ture of the injected-plasma column are more amenable to
analysis. Excellent agreement between experiment and the-
ory encourages further study and a search for better experi-
mental configurations to realize a new class of devices with
high efficiency.
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Fig. 2. Measured phase shift normalized to units of deg/cm[15].
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ITIl. MODEL AND ANALYSIS OF A PLASMA-CONTROLLED

DieLECTRIC WAVEGUIDE

The geometry of the rectangular dielectric—plasma guide
model is shown in Fig. 3. The guide cross section is in the
x -y plane, and the z coordinate represents the direction of
propagation. The dimensions of the guide are denoted by a
and b, and the plasma region thickness by #,. The medium
surrounding the waveguide is air. The relative dielectric
constant and refractive index of the dielectric region 0 < y
<b-t,aree, and n, = \/67, , respectively, and those of the
dielectric—plasma region b — ¢, < y < b are [13]

2

w
2 P
€, =N, =€ —d
? ? w2+v§
2
w 1%
. pa o« . 2
— jo———-2=(n—jk)". (1)
w2+1/3‘°

The free-charge contribution (plasma) is characterized by a
plasma frequency w,, = (¢2N,/m.g,)"/? of each species of
density N,, and an effective collision frequency »,. These
various species in an optically formed plasma are denoted
by thermally ionized and photo-induced holes (light and
heavy) and electrons. The values of the various species
properties, that is, density, effective mass, and collision
frequency, are listed in Fig. 4(a) for Si and Fig. 4(b) for
GaAs. In Fig. 4(a) the real part 7 and imaginary part « of
the refractive index for Si (see (1)) are plotted as a function
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Fig. 4. (a) Plot of the plasma region refractive index versus plasma
den31ty in Si at 94 GHz. Here Pp = 0.14 N,,; Py = 0.86 N,; m%=0259
mo; my=0.38 mo; mp, =0.16 mo; m3, =0.49 Mmg; ue—ISOO cmz/V
857, =22x10- 12 8 pp =600 em’/V-s; 7,=13x 1071 5: and N,
10” em™? [16], [17}. (b) Plot of the plasma-reglon refractive mdex
versus plasma density in GaAs at 94 GHz. Here P, =0, Py = N,
m¥=0.06 my; m} =05 mo, mp, = 0.8 my; p,= 8300 cm?/V-s;
33x107 P, ;L,,-—450 em?/V-s; 7,=128x10"1 5 andN0—14><
106 em ™3 [18-20].

of plasma density for a 94-GHz wave. Likewise, in Fig.
4(b) the refractive index in the plasma-dielectric region for
GaAs is plotted. For each material, note the metallic
nature of the plasma region for plasma density above
about 10'® cm~? for Si and 10'> cm ™ for GaAs.

For the case of well-guided modes, the analysis is consid-
erably simplified in that the dispersion equation is essen-
tially decoupled between the x and y directions [21]. That
is, if the fields in the dielectric are assumed to vary as
expi(wt —k.x—k,y—k,z), we find that boundary con-
ditions in x determine k,, those in y determine %k, and
from these one can then determine k.. With these assump-
tions, the modes decouple into TM, “called E E] .. and TE,
called Ey , modes. The propagation constant k_ is com-
puted for the cases with and without the presence of the

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 2, FEBRUARY 1983

plasma region, k. (complex), k, (real), respectively, and
from these the plasma induced phase shift A¢ for a given
length of waveguide / can be computed by

A= (Rek,—k,)I, rad

and the attenuation coefficient by

(2)

L (3)

Specifically, in a waveguide of dimensions a and b and
with no plasma present, n, = n,(w,,=0), k, and k, for the
E; , mode are approximated by [21]

A
k zﬂlni 0

*™™ a 7a (

a=Imk,, cm

-1
€ —1)1/2] )
and
-1

7€, b (¢, — 1)1/2

~ 47
Ky =5 [1+ (5)

Here p is the number of extrema in the x direction, g is the
number of extrema in the y direction, and A, is the
free-space wavelength of the propagating wave. Similarly,
for well-guided E¢ , modes, k, and k, are approximated by
[21]

A
k =ﬂ[1+ ! 2 (6)

-1
XTE a 7T€ra (E b_l)l/Z]
r

and
-1

A
k Zg‘z 1+L"—O—S
b (1)

(7)

YTE b

With these values of k, and k,,, we can compute k, in the
guide without the plasma present

o 1/2
k= (24 k=i ®)

where k, and k, are given by either their TM values (4)
and (5), or their TE values (6) and (7).

Now consider the case when the plasma layer is present,
as shown in Fig. 3. Again, assuming the decoupling due to
well-guided modes is valid, we note that the solutions for
k. for the EJ , and £, , modes are given by (4) and (6). In

the y dlrectlon the solutlon for k, for TM(E} ) waves is

found by solving [13]

t _Igéi+t 1 ic—E—t | Ky ~k,

an k, an k. c, an |tan” k t,
—k(b=1,)+(g-1)7=0 (9)

and for TE(E} ) waves

—1 Ka -1

tan ’ +tan - tan tan™

—k,(b- )+(q—1)7r—0. (10)

In (9) and (10), we have defined the various k,’s in each
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region (Fig. 3) as

2
Ka—xzor—(ni—l)l/z
2
=22 (2 12)
k=27 (n2 = n2)"? (11)

and n, is the effective refractive index of the wave in the
decoupled guide. In the plasma layer, the index » p 18
complex and depends upon the density of the plasma (see
(1)). Substituting the k,’s into (9) and (10) results in
transcendental equations for n . These equations are solved
numerically for n,, from which k, is determined. The value
of k, is the value of k, in the dielectric region in the
presence of the plasma layer and thus k, may be found by

o? 1/2
k;=( 25 k2 k2) . (12)
C

We can then compute the phase shift A¢ and attenuation «
from (2) and (3), using (8) and (12).

In [15], plots of phase shift and attenuation versus
plasma density, with plasma region thickness a parameter,
were shown for the lowest order £ mode, i.e., E{ . The Si
waveguide cross sections for those plots were 2.4 X 1 mm?
and 1Xx0.5 mm?, and the plasma thickness was varied from
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I pm to half the guide depth. In this paper, we have
calculated A¢ and a as a function of the plasma density for
a rectangular Si waveguide of dimensions 2.4 X 1 mm? for
all E} and E;, modes that can propagate for a plasma
reglon thlckness of 10 pm. The results of the calculations
are shown in Figs. 5 and 6. In Fig. 5(a) the phase shift per
centimeter is plotted as a function of the plasma density
for the EY| through the EZ; modes, which are the only E} |
modes that can propagate in this guide. The corresponding
loss in dB /cm is plotted in Fig. 5(b). As the plasma density
increases from 10" cm™2 to 10%° cm~3, the skin depth in
Si decreases from more than 200 pm to less than 1 pm.
When the skin depth is equal to or larger than the plasma
layer thickness, the millimeter wave penetrates deeply into
the plasma layer causing loss. The maximum loss occurs
when the skin depth is about equal to the layer thickness.
The higher order modes have more loss in this regime than
the lower order modes, because more of the wave power is
concentrated in the plasma region when a higher order
mode is propagating in the guide. As the plasma density
increases further, the skin depth decreases. When the skin
depth is less than the thickness of the plasma layer, the
plasma region begins to act as a metallic conductor and the
dielectric waveguide becomes an image line. The attenua-
tion then drops off rapidly with increasing plasma density.
The maximum phase shift of the higher order modes is also
larger than that of the lower order modes because the
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waveguide becomes more dispersive closer to cutoff. The
other two TM modes this guide is capable of supporting at
94 GHz are the E{, and EJ, modes, both of which are of
higher order than the E{, mode. Their maximum phase
shifts are 1000° /cm and 1450° /cm, respectively.

Plots of the phase shift and attenuation curves for the
TE modes, Ef, through EJ, in the 2.4 X 1-mm’* guide at 94
GHz are shown in Fig. 6(a) and (b) for the 10-pm plasma
layer. The results are similar to those found previously for
the E) , modes, except that the magnitude of the maximum
phase ‘shift is less and the maximum loss in the guide is
less, reflecting the different field distribution requirements
between the TE and TM modes.

The effect of varying the frequency of the millimeter
wave in the 2.4 X 1-mm? guide for a 10-pm plasma depth is
to shift the attenuation peak and the onset of the phase
shift. This is shown in Fig. 7(a) and (b) for the E{ | wave.
This is to be expected since the skin depth is a decreasing
function of frequency; therefore, the plasma density at
which the greatest amount of interaction between the
plasma and the wave occurs increases as frequency is
increased. Also, as the frequency is lowered, the maximum
phase shifts and attenuations are larger. This is because the
guide operates closer to cutoff at the lower frequencies. For
a frequency of 50 GHz, only the mode shown, E}, can
propagate in the waveguide.

In Fig. 8(a) and (b), we have plotted the results for a
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Fig. 8. (a) Comparison of the phase- shlft characteristics of an E{ | mode
propagating at 94 GHz in a 2.4 X 1- -mm? waveguide for Si (solid lines)
and GaAs (dashed lines) plotted with respect to plasma density. The
three sets of curves correspond to plasma depths of 500 pm, 50 pm,
and 5 pm, respectlvely (b) Comparison of the attenuation charactens-
tics of an E{ | mode propagating at 94 GHz in a 2.4 X 1- mm? waveguide
for Si (solid lines) and GaAs (dashed lines) plotted with respect to
plasma density The three sets of curves correspond to plasma depths of
500 pm, and 50 pm. and 5 pm, respectively.

2.4x 1-mm? GaAs waveguide. Because the features with
respect to multimode and frequency variation are similar to
those presented for Si, we have displayed only the lowest
order TM mode E{, results at 94 GHz with plasma
thickness a parameter. For comparison, the Si guide results
are displayed as solid curves. The general features of the
GaAs curves are the same as those for Si; however, the
curves are shifted toward lower plasma densities consistent
with the shift in the dielectric properties of GaAs versus Si
shown in Fig. 4.

A. Surface Model of the Plasma

A means of simplifying the calculation of the propaga-
tion constant k, in the presence of the plasma is to assume
that the plasma is located only at the surface with a surface
plasma density

-2
Nsa = Natp’ cm

(13)

where N, is the volume density of each species «, and ¢, is
the thickness of the plasma. With this simplification, the
plasma effect only appears in the boundary condition at
y = b. A picture of this simplified model is shown in Fig. 9.
The analysis proceeds as before by assuming that the
solutions for k, and k, are decoupled. Again we find k is
given by (4) and (6). We examine the plasma’s reaction to
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Fig. 9. Cross section of the plasma controlled dielectric waveguide with
the plasma treated as a surface density.

the EM fields in terms of the linearized charge density p
and a linearized current density J, where

P=2q.1,
(14)

Please note that N, is the zeroth-order density of species «,
and n, represents the linearized response to the millimeter
wave. Likewise, since the zeroth-order velocity of each
species « is zero, U, represents the linearized velocity
response to the millimeter wave. We use the integral form
of Maxwell’'s Equations to find the boundary condition at
y = b. The plasma quantities n, and ¥, are found from the
linearized fluid equations to be

J= Y q.Ng,.

e qa 1 8Ex 3Ey
e T w—-iVa{n"‘O{ ax | dy
) on
— 1szz + Ey—a—y—“} (15)
and
. _ "4 E
’Da - ma @ — iVa - (16)

We have defined n,,= N, 6(y—b), that is, a plasma
located only at the surface y = b.

For TM waves, the surface plasma acts as a surface
current and the transcendental equation for &, becomes

1 Ka 1
{6’ k, [ 1-K,1,(¢,—¢,) ]}

—kb+(g-1)7=0 (17)

where K, and k, are as in (11). For TE waves, the surface
plasma acts as a surface charge and the transcendental

equation for k£, becomes
20\t
) }?(%‘fﬂ]}

X [H(
—kb+(g—-1)7=0. (18)

-1 Ka -1 ]
tan %, +tan { A
While (17) and (18) are still transcendental, their solutions
are much simpler than those of (9) and (10). Fig. 10(a) and
(b) shows the results of the surface plasma model analysis
in comparison to the volume model presented in the pre-
vious figures. Good agreement of the phase shifts and
attenuations of the two models with respect to plasma
density at small plasma depth for a TM wave at 94 GHz is
seen. As the thickness of the plasma layer gets larger, the

1

K
ErTC—li +tan
r

tan~
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Fig. 10. (a) Comparison of the phase-shift characteristics of an E{,
mode propagating at 94 GHz in a 2.4 X I-mm? Si wavegnide for the
surface model (dashed lines) and the volume model (solid lines) plotted
with respect to plasma density. The three sets of curves correspond to
plasma depths of 100 pm, 10 pm, and Sum, respectively. (b) Compari-
son of the attenuation characteristics of an Ef ; mode propagating at 94 .
GHz in a 2.4 X 1-mm” Si waveguide for the surface model (dashed lines)
and the volume model (solid lines) plotted with respect to plasma
density. The three sets of curves correspond to plasma depths of 100
pm, 10 pm, and § pm, respectively.

agreement becomes poorer, as expected. Similar agreement
is found for the TE waves and for higher order modes of
both the TE and TM waves. Clearly, the simplicity of this
model will aid us in figure analysis pertaining to mode
conversion of a single incident wave.

IV. CONCLUSION

We have analyzed in detail the steady-state millimeter-
wave propagation characteristics of Si and GaAs dielectric
waveguides that contain a plasma-dominated region. We
have calculated the phase shift and attenuation properties
resulting from the presence of the plasma. Higher order
modes were examined as well as frequency variation of the
millimeter wave for all modes capable of propagating in a
given sized guide. A surface plasma model was formulated
that greatly simplified the analysis, yet gave good agree-
ment with the more elaborate volume model. This model
will facilitate the computation of a more complicated situa-
tion where mode coupling effects may be important. Phase
shifts as high as 1400°/cm are predicted for modes near
cutoff. This analysis indicates that in an oversized guide
where many modes can be present, the properties of all
modes are similar in both their expected phase shift as well
as their attenuation properties.
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